线程同步
看一个打印车票的例子
/**
* 此程序存在线程的安全问题:打印车票时,会出现重票、错票
*/
class Window1 implements Runnable {
private int ticket = 100;
@Override
public void run() {
while (true) {
if (ticket > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "售票,票号为:"
+ ticket--);
} else {
break;
}
}
}
}
public class TestWindow1 {
public static void main(String[] args) {
Window1 w = new Window1();
Thread t1 = new Thread(w);
Thread t2 = new Thread(w);
Thread t3 = new Thread(w);
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
经过多次测试,在打印台上能看到票号为0或者为负数的情况。
上述代码有安全问题,需要在代码中添加同步机制
使用synchronized来解决同步问题,有以下两种方式:
- 同步代码块:
synchronized (对象){
// 需要被同步的代码
}
- synchronized还可以放在方法声明中,表示整个方法为同步方法。
public synchronized void show (String name){
// 需要被同步的代码
}
要想使用好同步机制,我们需要进一步理解同步机制中的锁是什么?
同步机制中的锁
同步锁机制:
在《Thinking in Java》中有一段解释:对于并发工作,你需要某种方式来防止两个任务访问相同的资源(其实就是共享资源竞争)。 防止这种冲突的方法就是当资源被一个任务使用时,在其上加锁。第一个访问某项资源的任务必须锁定这项资源,使其他任务在其被解锁之前,就无法访问它了,而在其被解锁
之时,另一个任务就可以锁定并使用它了。
synchronized的锁是什么?
- 任意对象都可以作为同步锁。所有对象都自动含有单一的锁(监视器)。
- 同步方法的锁:静态方法(类名.class)、非静态方法(this)
- 同步代码块:自己指定,很多时候也是指定为this或类名.class
我们需要注意是:
- 必须确保使用同一个资源的多个线程共用一把锁,这个非常重要,否则就无法保证共享资源的安全
- 一个线程类中的所有静态方法共用同一把锁(类名.class),所有非静态方法共用同一把锁(this),在同步代码块中指定锁需谨慎,以免有安全问题。
同步的范围
- 代码是否存在线程安全?
(1)明确哪些代码是多线程运行的代码
(2)明确多个线程是否有共享数据
(3)明确多线程运行代码中是否有多条语句操作共享数据 - 如何解决?
对多条操作共享数据的语句,只能让一个线程都执行完,在执行过程中,其他线程不可以参与执行。
即所有操作共享数据的这些语句都要放在同步范围中
合理使用同步锁机制:
范围太小:没锁住所有有安全问题的代码
范围太大:没发挥多线程的功能
释放锁的操作
- 当前线程的同步方法、同步代码块执行结束。
- 当前线程在同步代码块、同步方法中遇到break、return终止了该代码块、该方法的继续执行。
- 当前线程在同步代码块、同步方法中出现了未处理的Error或Exception,导致异常结束。
- 当前线程在同步代码块、同步方法中执行了线程对象的wait()方法,当前线程暂停,并释放锁
不会释放锁的操作
- 线程执行同步代码块或同步方法时,程序调用Thread.sleep()、Thread.yield()方法暂停当前线程的执行
- 线程执行同步代码块时,其他线程调用了该线程的suspend()方法将该线程挂起,该线程不会释放锁(同步监视器)。应尽量避免使用suspend()和resume()来控制线程。
怎么使用同步锁机制
下面我们用同步锁机制来解决上述 打印车票的安全问题
1、实现Runnable接口,同步代码块方式
/**
* 例子:创建三个窗口卖票,总票数为100张.使用实现Runnable接口的方式
*
* 1.问题:卖票过程中,出现了重票、错票 -->出现了线程的安全问题
* 2.问题出现的原因:当某个线程操作车票的过程中,尚未操作完成时,其他线程参与进来,也操作车票。
* 3.如何解决:当一个线程a在操作ticket的时候,其他线程不能参与进来。直到线程a操作完ticket时,其他
* 线程才可以开始操作ticket。这种情况即使线程a出现了阻塞,也不能被改变。
*
*
* 4.在Java中,我们通过同步机制,来解决线程的安全问题。
*
* 方式一:同步代码块
*
* synchronized(同步监视器){
* //需要被同步的代码
*
* }
* 说明:1.操作共享数据的代码,即为需要被同步的代码。 -->不能包含代码多了,也不能包含代码少了。
* 2.共享数据:多个线程共同操作的变量。比如:ticket就是共享数据。
* 3.同步监视器,俗称:锁。任何一个类的对象,都可以充当锁。
* 要求:多个线程必须要共用同一把锁。
*
* 补充:在实现Runnable接口创建多线程的方式中,我们可以考虑使用this充当同步监视器。
* 方式二:同步方法。
* 如果操作共享数据的代码完整的声明在一个方法中,我们不妨将此方法声明同步的。
*
*
* 5.同步的方式,解决了线程的安全问题。---好处
* 操作同步代码时,只能有一个线程参与,其他线程等待。相当于是一个单线程的过程,效率低。 ---局限性
*/
class Window1 implements Runnable{
private int ticket = 100;
// Object obj = new Object();
// Dog dog = new Dog();
@Override
public void run() {
// Object obj = new Object();
while(true){
synchronized (this){//此时的this:唯一的Window1的对象 //方式二:synchronized (dog) {
if (ticket > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);
ticket--;
} else {
break;
}
}
}
}
}
public class WindowTest1 {
public static void main(String[] args) {
Window1 w = new Window1();
Thread t1 = new Thread(w);
Thread t2 = new Thread(w);
Thread t3 = new Thread(w);
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
class Dog{
}
2、继承Thread类,同步代码块方式
/**
* 使用同步代码块解决继承Thread类的方式的线程安全问题
*
* 例子:创建三个窗口卖票,总票数为100张.使用继承Thread类的方式
*
* 说明:在继承Thread类创建多线程的方式中,慎用this充当同步监视器,考虑使用当前类充当同步监视器。
*/
class Window2 extends Thread{
private static int ticket = 100;
private static Object obj = new Object();
@Override
public void run() {
while(true){
//正确的
// synchronized (obj){
synchronized (Window2.class){//Class clazz = Window2.class,Window2.class只会加载一次
//错误的方式:this代表着t1,t2,t3三个对象
// synchronized (this){
if(ticket > 0){
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(getName() + ":卖票,票号为:" + ticket);
ticket--;
} else {
break;
}
}
}
}
}
public class WindowTest2 {
public static void main(String[] args) {
Window2 t1 = new Window2();
Window2 t2 = new Window2();
Window2 t3 = new Window2();
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
3、实现Runnable接口,同步方法方式
/**
* 使用同步方法解决实现Runnable接口的线程安全问题
*
*
* 关于同步方法的总结:
* 1. 同步方法仍然涉及到同步监视器,只是不需要我们显式的声明。
* 2. 非静态的同步方法,同步监视器是:this
* 静态的同步方法,同步监视器是:当前类本身
*/
class Window3 implements Runnable {
private int ticket = 100;
@Override
public void run() {
while (true) {
show();
}
}
private synchronized void show(){//同步监视器:this
//synchronized (this){
if (ticket > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);
ticket--;
}
//}
}
}
public class WindowTest3 {
public static void main(String[] args) {
Window3 w = new Window3();
Thread t1 = new Thread(w);
Thread t2 = new Thread(w);
Thread t3 = new Thread(w);
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
4、继承Thread类,同步方法方式
/**
* 使用同步方法处理继承Thread类的方式中的线程安全问题
*/
class Window4 extends Thread {
private static int ticket = 100;
@Override
public void run() {
while (true) {
show();
}
}
private static synchronized void show(){//同步监视器:Window4.class
//private synchronized void show(){ //同步监视器:t1,t2,t3。此种解决方式是错误的
if (ticket > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":卖票,票号为:" + ticket);
ticket--;
}
}
}
public class WindowTest4 {
public static void main(String[] args) {
Window4 t1 = new Window4();
Window4 t2 = new Window4();
Window4 t3 = new Window4();
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
线程死锁
不同的线程分别占用对方需要的同步资源不放弃,都在等待对方放弃自己需要的同步资源,就形成了线程的死锁;
出现死锁后,不会出现异常,不会出现提示,只是所有的线程都处于阻塞状态,无法继续。
解决方案:
- 专门的算法、原则
- 尽量减少同步资源的定义
- 尽量避免嵌套同步
看一个死锁的例子
//死锁的演示
class A {
public synchronized void foo(B b) { //同步监视器:A类的对象:a
System.out.println("当前线程名: " + Thread.currentThread().getName()
+ " 进入了A实例的foo方法"); // ①
// try {
// Thread.sleep(200);
// } catch (InterruptedException ex) {
// ex.printStackTrace();
// }
System.out.println("当前线程名: " + Thread.currentThread().getName()
+ " 企图调用B实例的last方法"); // ③
b.last();
}
public synchronized void last() {//同步监视器:A类的对象:a
System.out.println("进入了A类的last方法内部");
}
}
class B {
public synchronized void bar(A a) {//同步监视器:b
System.out.println("当前线程名: " + Thread.currentThread().getName()
+ " 进入了B实例的bar方法"); // ②
// try {
// Thread.sleep(200);
// } catch (InterruptedException ex) {
// ex.printStackTrace();
// }
System.out.println("当前线程名: " + Thread.currentThread().getName()
+ " 企图调用A实例的last方法"); // ④
a.last();
}
public synchronized void last() {//同步监视器:b
System.out.println("进入了B类的last方法内部");
}
}
public class DeadLock implements Runnable {
A a = new A();
B b = new B();
public void init() {
Thread.currentThread().setName("主线程");
// 调用a对象的foo方法
a.foo(b);
System.out.println("进入了主线程之后");
}
@Override
public void run() {
Thread.currentThread().setName("副线程");
// 调用b对象的bar方法
b.bar(a);
System.out.println("进入了副线程之后");
}
public static void main(String[] args) {
DeadLock dl = new DeadLock();
new Thread(dl).start();
dl.init();
}
}
测试结果:
当前线程名: 主线程 进入了A实例的foo方法
当前线程名: 副线程 进入了B实例的bar方法
当前线程名: 主线程 企图调用B实例的last方法
当前线程名: 副线程 企图调用A实例的last方法
看测试结果我们发现,A和B类的last()方法内部的打印都没有打印输出,可以看出死锁了。
Lock(锁)
- 从JDK 5.0开始,Java提供了更强大的线程同步机制,通过显式定义同步锁对象来实现同步。同步锁使用Lock对象充当。
java.util.concurrent.locks.Lock
接口是控制多个线程对共享资源进行访问的工具。锁提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问共享资源之前应先获得Lock对象。- ReentrantLock(可重入锁) 类实现了 Lock ,它拥有与 synchronized 相同的并发性和内存语义,在实现线程安全的控制中,比较常用的是ReentrantLock,可以显式加锁、释放锁。
代码实现
import java.util.concurrent.locks.ReentrantLock;
/**
* 解决线程安全问题的方式三:Lock锁 --- JDK5.0新增
* <p>
* 1. 面试题:synchronized 与 Lock的异同?
* 相同:二者都可以解决线程安全问题
* 不同:synchronized机制在执行完相应的同步代码以后,自动的释放同步监视器
* Lock需要手动的启动同步(lock()),同时结束同步也需要手动的实现(unlock())
* <p>
* 2.优先使用顺序:
* Lock 同步代码块(已经进入了方法体,分配了相应资源) 同步方法(在方法体之外)
* <p>
* <p>
* 面试题:如何解决线程安全问题?有几种方式
*
*/
class Window implements Runnable {
private int ticket = 100;
//1.实例化ReentrantLock
private ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while (true) {
try {
//2.调用锁定方法lock()
lock.lock();
if (ticket > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + ":售票,票号为:" + ticket);
ticket--;
} else {
break;
}
} finally {
//3.调用解锁方法:unlock()
lock.unlock();
}
}
}
}
public class LockTest {
public static void main(String[] args) {
Window w = new Window();
Thread t1 = new Thread(w);
Thread t2 = new Thread(w);
Thread t3 = new Thread(w);
t1.setName("窗口1");
t2.setName("窗口2");
t3.setName("窗口3");
t1.start();
t2.start();
t3.start();
}
}
synchronized 与 Lock 的对比
- Lock是显式锁(手动开启和关闭锁),synchronized是隐式锁,出了作用域自动释放;
- Lock只有代码块锁,synchronized有代码块锁和方法锁;
- 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好。并且具有更好的扩展性(提供更多的子类);
优先使用顺序:
Lock > 同步代码块(已经进入了方法体,分配了相应资源) > 同步方法(在方法体之外)
评论